March 1, 2024, 5:43 a.m. | Graham Pash, Malik Hassanaly, Shashank Yellapantula

cs.LG updates on arXiv.org arxiv.org

arXiv:2402.18729v1 Announce Type: cross
Abstract: While many physics-based closure model forms have been posited for the sub-filter scale (SFS) in large eddy simulation (LES), vast amounts of data available from direct numerical simulation (DNS) create opportunities to leverage data-driven modeling techniques. Albeit flexible, data-driven models still depend on the dataset and the functional form of the model chosen. Increased adoption of such models requires reliable uncertainty estimates both in the data-informed and out-of-distribution regimes. In this work, we employ Bayesian …

abstract arxiv bayesian cs.lg data data-driven dns filter forms modeling networks neural networks numerical opportunities physics physics.data-an physics.flu-dyn quantification scale simulation turbulence type uncertainty vast

Senior Machine Learning Engineer

@ GPTZero | Toronto, Canada

ML/AI Engineer / NLP Expert - Custom LLM Development (x/f/m)

@ HelloBetter | Remote

Doctoral Researcher (m/f/div) in Automated Processing of Bioimages

@ Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) | Jena

Seeking Developers and Engineers for AI T-Shirt Generator Project

@ Chevon Hicks | Remote

Principal Data Architect - Azure & Big Data

@ MGM Resorts International | Home Office - US, NV

GN SONG MT Market Research Data Analyst 11

@ Accenture | Bengaluru, BDC7A