April 9, 2024, 4:43 a.m. | Peng Zhao, Yu-Jie Zhang, Lijun Zhang, Zhi-Hua Zhou

cs.LG updates on arXiv.org arxiv.org

arXiv:2112.14368v3 Announce Type: replace
Abstract: We investigate online convex optimization in non-stationary environments and choose dynamic regret as the performance measure, defined as the difference between cumulative loss incurred by the online algorithm and that of any feasible comparator sequence. Let $T$ be the time horizon and $P_T$ be the path length that essentially reflects the non-stationarity of environments, the state-of-the-art dynamic regret is $\mathcal{O}(\sqrt{T(1+P_T)})$. Although this bound is proved to be minimax optimal for convex functions, in this paper, …

abstract algorithm arxiv cs.lg difference dynamic environments horizon loss optimization performance type

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Engineer

@ Lemon.io | Remote: Europe, LATAM, Canada, UK, Asia, Oceania

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US