Feb. 14, 2024, 5:42 a.m. | Franz M. Rohrhofer Stefan Posch Clemens G\"o{\ss}nitzer Bernhard C. Geiger

cs.LG updates on arXiv.org arxiv.org

This paper employs physics-informed neural networks (PINNs) to solve Fisher's equation, a fundamental representation of a reaction-diffusion system with both simplicity and significance. The focus lies specifically in investigating Fisher's equation under conditions of large reaction rate coefficients, wherein solutions manifest as traveling waves, posing a challenge for numerical methods due to the occurring steepness of the wave front. To address optimization challenges associated with the standard PINN approach, a residual weighting scheme is introduced. This scheme is designed to …

challenge cs.lg diffusion equation families fisher focus lies manifest networks neural networks paper physics physics-informed rate representation significance simplicity solutions solve

Senior Machine Learning Engineer

@ GPTZero | Toronto, Canada

ML/AI Engineer / NLP Expert - Custom LLM Development (x/f/m)

@ HelloBetter | Remote

Doctoral Researcher (m/f/div) in Automated Processing of Bioimages

@ Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) | Jena

Seeking Developers and Engineers for AI T-Shirt Generator Project

@ Chevon Hicks | Remote

Principal Data Architect - Azure & Big Data

@ MGM Resorts International | Home Office - US, NV

GN SONG MT Market Research Data Analyst 11

@ Accenture | Bengaluru, BDC7A