March 1, 2024, 5:42 a.m. | Xi Wang, Laurence Aitchison

cs.LG updates on arXiv.org arxiv.org

arXiv:2402.18824v1 Announce Type: new
Abstract: We propose a batch size invariant version of Adam, for use in large-scale, distributed settings, in which the mini-batch is divided into micro-batches which are distributed among worker nodes. For the v term, standard Adam first computes the average over micro-batch gradients, then squares, while in the batch size invariant Adam proposed here, we first square the micro-batch gradients, then average. Previous work (e.g. Malladi et al. 2022) used an alternative approach that involved a …

abstract adam arxiv cs.lg distributed micro nodes scale squares standard type

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Engineer

@ Lemon.io | Remote: Europe, LATAM, Canada, UK, Asia, Oceania

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US