Feb. 20, 2024, 5:42 a.m. | Semih Cayci, Atilla Eryilmaz

cs.LG updates on arXiv.org arxiv.org

arXiv:2402.12241v1 Announce Type: new
Abstract: We analyze recurrent neural networks trained with gradient descent in the supervised learning setting for dynamical systems, and prove that gradient descent can achieve optimality \emph{without} massive overparameterization. Our in-depth nonasymptotic analysis (i) provides sharp bounds on the network size $m$ and iteration complexity $\tau$ in terms of the sequence length $T$, sample size $n$ and ambient dimension $d$, and (ii) identifies the significant impact of long-term dependencies in the dynamical system on the convergence …

abstract analysis analyze arxiv complexity convergence cs.lg gradient iteration massive math.oc network networks neural networks prove recurrent neural networks stat.ml supervised learning systems type

Senior Machine Learning Engineer

@ GPTZero | Toronto, Canada

ML/AI Engineer / NLP Expert - Custom LLM Development (x/f/m)

@ HelloBetter | Remote

Doctoral Researcher (m/f/div) in Automated Processing of Bioimages

@ Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) | Jena

Seeking Developers and Engineers for AI T-Shirt Generator Project

@ Chevon Hicks | Remote

Principal Data Architect - Azure & Big Data

@ MGM Resorts International | Home Office - US, NV

GN SONG MT Market Research Data Analyst 11

@ Accenture | Bengaluru, BDC7A