April 15, 2024, 4:41 a.m. | Nastaran Saadati, Minh Pham, Nasla Saleem, Joshua R. Waite, Aditya Balu, Zhanhong Jiang, Chinmay Hegde, Soumik Sarkar

cs.LG updates on arXiv.org arxiv.org

arXiv:2404.08079v1 Announce Type: new
Abstract: Recent advances in decentralized deep learning algorithms have demonstrated cutting-edge performance on various tasks with large pre-trained models. However, a pivotal prerequisite for achieving this level of competitiveness is the significant communication and computation overheads when updating these models, which prohibits the applications of them to real-world scenarios. To address this issue, drawing inspiration from advanced model merging techniques without requiring additional training, we introduce the Decentralized Iterative Merging-And-Training (DIMAT) paradigm--a novel decentralized deep learning …

abstract advances algorithms applications arxiv communication computation cs.cv cs.lg decentralized deep learning deep learning algorithms edge however iterative math.oc merging performance pivotal pre-trained models tasks them training type world

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Engineer

@ Lemon.io | Remote: Europe, LATAM, Canada, UK, Asia, Oceania

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US