April 8, 2024, 4:42 a.m. | Trilokesh Ranjan Sarkar, Nilanjan Das, Pralay Sankar Maitra, Bijoy Some, Ritwik Saha, Orijita Adhikary, Bishal Bose, Jaydip Sen

cs.LG updates on arXiv.org arxiv.org

arXiv:2404.04245v1 Announce Type: cross
Abstract: This technical report delves into an in-depth exploration of adversarial attacks specifically targeted at Deep Neural Networks (DNNs) utilized for image classification. The study also investigates defense mechanisms aimed at bolstering the robustness of machine learning models. The research focuses on comprehending the ramifications of two prominent attack methodologies: the Fast Gradient Sign Method (FGSM) and the Carlini-Wagner (CW) approach. These attacks are examined concerning three pre-trained image classifiers: Resnext50_32x4d, DenseNet-201, and VGG-19, utilizing the …

abstract adversarial adversarial attacks arxiv attacks classification comparison cs.cr cs.cv cs.lg defense distillation exploration image machine machine learning machine learning models networks neural networks report robustness role study technical type

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Engineer

@ Lemon.io | Remote: Europe, LATAM, Canada, UK, Asia, Oceania

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US