April 29, 2024, 4:42 a.m. | Theresa Wagner, Franziska Nestler, Martin Stoll

cs.LG updates on arXiv.org arxiv.org

arXiv:2404.17344v1 Announce Type: new
Abstract: One of the main computational bottlenecks when working with kernel based learning is dealing with the large and typically dense kernel matrix. Techniques dealing with fast approximations of the matrix vector product for these kernel matrices typically deteriorate in their performance if the feature vectors reside in higher-dimensional feature spaces. We here present a technique based on the non-equispaced fast Fourier transform (NFFT) with rigorous error analysis. We show that this approach is also well …

arxiv cs.lg cs.na derivatives evaluation feature fourier kernel math.na type

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Engineer

@ Lemon.io | Remote: Europe, LATAM, Canada, UK, Asia, Oceania

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US