April 12, 2024, 4:43 a.m. | Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H. Huang, Dhruva Tirumala, Jan Humplik, Markus Wulfmeier, Saran Tunyasuvunakool, Noah Y. Siegel, Roland H

cs.LG updates on arXiv.org arxiv.org

arXiv:2304.13653v2 Announce Type: replace-cross
Abstract: We investigate whether Deep Reinforcement Learning (Deep RL) is able to synthesize sophisticated and safe movement skills for a low-cost, miniature humanoid robot that can be composed into complex behavioral strategies in dynamic environments. We used Deep RL to train a humanoid robot with 20 actuated joints to play a simplified one-versus-one (1v1) soccer game. The resulting agent exhibits robust and dynamic movement skills such as rapid fall recovery, walking, turning, kicking and more; and …

abstract agile arxiv bipedal bipedal robot cost cs.ai cs.lg cs.ro deep rl dynamic environments humanoid humanoid robot low reinforcement reinforcement learning robot safe skills soccer strategies train type

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Engineer

@ Lemon.io | Remote: Europe, LATAM, Canada, UK, Asia, Oceania

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US