Feb. 9, 2024, 5:44 a.m. | Tzu-Yuan Lin Minghan Zhu Maani Ghaffari

cs.LG updates on arXiv.org arxiv.org

This paper proposes an equivariant neural network that takes data in any semi-simple Lie algebra as input. The corresponding group acts on the Lie algebra as adjoint operations, making our proposed network adjoint-equivariant. Our framework generalizes the Vector Neurons, a simple $\mathrm{SO}(3)$-equivariant network, from 3-D Euclidean space to Lie algebra spaces, building upon the invariance property of the Killing form. Furthermore, we propose novel Lie bracket layers and geometric channel mixing layers that extend the modeling capacity. Experiments are conducted …

3-d algebra cs.ai cs.lg data framework making network networks neural network neural networks neurons operations paper simple space spaces vector

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Engineer

@ Lemon.io | Remote: Europe, LATAM, Canada, UK, Asia, Oceania

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US