April 26, 2024, 4:42 a.m. | Muralikrishnan Gopalakrishnan Meena, Demetri Liousas, Andrew D. Simin, Aditya Kashi, Wesley H. Brewer, James J. Riley, Stephen M. de Bruyn Kops

cs.LG updates on arXiv.org arxiv.org

arXiv:2404.16141v1 Announce Type: cross
Abstract: We develop time-series machine learning (ML) methods for closure modeling of the Unsteady Reynolds Averaged Navier Stokes (URANS) equations applied to stably stratified turbulence (SST). SST is strongly affected by fine balances between forces and becomes more anisotropic in time for decaying cases. Moreover, there is a limited understanding of the physical phenomena described by some of the terms in the URANS equations. Rather than attempting to model each term separately, it is attractive to …

abstract arxiv cs.lg data machine machine learning modeling physics.ao-ph physics.flu-dyn series turbulence type

Data Engineer

@ Lemon.io | Remote: Europe, LATAM, Canada, UK, Asia, Oceania

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US

Research Engineer

@ Allora Labs | Remote

Ecosystem Manager

@ Allora Labs | Remote

Founding AI Engineer, Agents

@ Occam AI | New York