March 25, 2022, 1:51 p.m. | Synced

Synced syncedreview.com

A Microsoft Research team proposes FocalNet (Focal Modulation Network), a simple and attention-free architecture designed to replace transformers’ self-attention module. FocalNets exhibit significant superiority over self-attention for effective and efficient visual modelling in real-world applications.


The post Microsoft’s FocalNets Replace ViTs’ Self-Attention With Focal Modulation to Improve Visual Modelling first appeared on Synced.

ai artificial intelligence attention machine learning machine learning & data science microsoft ml modelling research self-attention technology vision-transformer

More from syncedreview.com / Synced

Senior Machine Learning Engineer

@ GPTZero | Toronto, Canada

ML/AI Engineer / NLP Expert - Custom LLM Development (x/f/m)

@ HelloBetter | Remote

Doctoral Researcher (m/f/div) in Automated Processing of Bioimages

@ Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) | Jena

Seeking Developers and Engineers for AI T-Shirt Generator Project

@ Chevon Hicks | Remote

Principal Data Architect - Azure & Big Data

@ MGM Resorts International | Home Office - US, NV

GN SONG MT Market Research Data Analyst 11

@ Accenture | Bengaluru, BDC7A