March 5, 2024, 2:41 p.m. | Olivia T. Zahn, Thomas L. Daniel, J. Nathan Kutz

cs.LG updates on arXiv.org arxiv.org

arXiv:2403.00974v1 Announce Type: new
Abstract: We characterize the connectivity structure of feed-forward, deep neural networks (DNNs) using network motif theory. To address whether a particular motif distribution is characteristic of the training task, or function of the DNN, we compare the connectivity structure of 350 DNNs trained to simulate a bio-mechanical flight control system with different randomly initialized parameters. We develop and implement algorithms for counting second- and third-order motifs and calculate their significance using their Z-score. The DNNs are …

abstract arxiv bio connectivity cs.lg distribution dnn function motif network networks neural networks theory training type

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Engineer

@ Lemon.io | Remote: Europe, LATAM, Canada, UK, Asia, Oceania

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US