May 7, 2024, 4:42 a.m. | Zehan Zhu, Yan Huang, Xin Wang, Jinming Xu

cs.LG updates on arXiv.org arxiv.org

arXiv:2405.02638v1 Announce Type: new
Abstract: In this paper, we propose a differentially private decentralized learning method (termed PrivSGP-VR) which employs stochastic gradient push with variance reduction and guarantees $(\epsilon, \delta)$-differential privacy (DP) for each node. Our theoretical analysis shows that, under DP Gaussian noise with constant variance, PrivSGP-VR achieves a sub-linear convergence rate of $\mathcal{O}(1/\sqrt{nK})$, where $n$ and $K$ are the number of nodes and iterations, respectively, which is independent of stochastic gradient variance, and achieves a linear speedup with …

abstract analysis arxiv cs.lg decentralized delta differential differential privacy epsilon gradient node noise paper privacy shows stochastic type utility variance

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Engineer

@ Lemon.io | Remote: Europe, LATAM, Canada, UK, Asia, Oceania

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US