Feb. 28, 2024, 5:43 a.m. | Senwei Liang, Shixiao W. Jiang, John Harlim, Haizhao Yang

cs.LG updates on arXiv.org arxiv.org

arXiv:2106.06682v4 Announce Type: replace-cross
Abstract: This paper proposes a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifolds, identified with point clouds, based on diffusion maps (DM) and deep learning. The PDE solver is formulated as a supervised learning task to solve a least-squares regression problem that imposes an algebraic equation approximating a PDE (and boundary conditions if applicable). This algebraic equation involves a graph-Laplacian type matrix obtained via DM asymptotic expansion, which is a …

abstract arxiv computational cs.lg cs.na deep learning diffusion framework free least machine machine learning maps math.na mesh paper regression solve solver squares supervised learning theory type

Senior Machine Learning Engineer

@ GPTZero | Toronto, Canada

ML/AI Engineer / NLP Expert - Custom LLM Development (x/f/m)

@ HelloBetter | Remote

Doctoral Researcher (m/f/div) in Automated Processing of Bioimages

@ Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) | Jena

Seeking Developers and Engineers for AI T-Shirt Generator Project

@ Chevon Hicks | Remote

Principal Data Architect - Azure & Big Data

@ MGM Resorts International | Home Office - US, NV

GN SONG MT Market Research Data Analyst 11

@ Accenture | Bengaluru, BDC7A