Feb. 2, 2024, 9:46 p.m. | Christoph Kerscher Stefan Minner

cs.LG updates on arXiv.org arxiv.org

Several metaheuristics use decomposition and pruning strategies to solve large-scale instances of the vehicle routing problem (VRP). Those complexity reduction techniques often rely on simple, problem-specific rules. However, the growth in available data and advances in computer hardware enable data-based approaches that use machine learning (ML) to improve scalability of solution algorithms. We propose a decompose-route-improve (DRI) framework that groups customers using clustering. Its similarity metric incorporates customers' spatial, temporal, and demand data and is formulated to reflect the problem's …

advances clustering complexity computer computer hardware cs.ai cs.lg cs.ne data demand growth hardware instances machine machine learning math.oc metaheuristics pruning routing rules scalability scale simple solve spatial strategies temporal windows

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Engineer

@ Lemon.io | Remote: Europe, LATAM, Canada, UK, Asia, Oceania

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US