March 19, 2024, 4:41 a.m. | S. Chandra Mouli, Danielle C. Maddix, Shima Alizadeh, Gaurav Gupta, Andrew Stuart, Michael W. Mahoney, Yuyang Wang

cs.LG updates on arXiv.org arxiv.org

arXiv:2403.10642v1 Announce Type: new
Abstract: Existing work in scientific machine learning (SciML) has shown that data-driven learning of solution operators can provide a fast approximate alternative to classical numerical partial differential equation (PDE) solvers. Of these, Neural Operators (NOs) have emerged as particularly promising. We observe that several uncertainty quantification (UQ) methods for NOs fail for test inputs that are even moderately out-of-domain (OOD), even when the model approximates the solution well for in-domain tasks. To address this limitation, we …

abstract arxiv cs.lg cs.na data data-driven differential differential equation domain equation machine machine learning math.na numerical observe operators quantification scientific solution type uncertainty work

Senior Machine Learning Engineer

@ GPTZero | Toronto, Canada

ML/AI Engineer / NLP Expert - Custom LLM Development (x/f/m)

@ HelloBetter | Remote

Doctoral Researcher (m/f/div) in Automated Processing of Bioimages

@ Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) | Jena

Seeking Developers and Engineers for AI T-Shirt Generator Project

@ Chevon Hicks | Remote

Senior Applied Data Scientist

@ dunnhumby | London

Principal Data Architect - Azure & Big Data

@ MGM Resorts International | Home Office - US, NV