Feb. 12, 2024, 5:41 a.m. | Sajjad Salem Salman Asoudeh

cs.LG updates on arXiv.org arxiv.org

Anomaly detection in SDN using data flow prediction is a difficult task. This problem is included in the category of time series and regression problems. Machine learning approaches are challenging in this field due to the manual selection of features. On the other hand, deep learning approaches have important features due to the automatic selection of features. Meanwhile, RNN-based approaches have been used the most. The LSTM and GRU approaches learn dependent entities well; on the other hand, the IndRNN …

anomaly anomaly detection cs.ai cs.lg cs.ni data data flow deep learning detection features flow hybrid machine machine learning networks prediction real-time regression series software software-defined time series

Research Scholar (Technical Research)

@ Centre for the Governance of AI | Hybrid; Oxford, UK

HPC Engineer (x/f/m) - DACH

@ Meshcapade GmbH | Remote, Germany

Encounter Data Management Professional

@ Humana | Work at Home - Kentucky

Pre-sales Manager (Data, Analytics & AI)

@ Databricks | Stockholm, Sweden

Lecturer / Senior Lecturer - Medical Imaging

@ Central Queensland University | Mackay, QLD, AU

Intern - Research Engineer

@ Plus | Santa Clara, CA