Feb. 5, 2024, 3:44 p.m. | Ziming Liu Max Tegmark

cs.LG updates on arXiv.org arxiv.org

Neural scaling laws (NSL) refer to the phenomenon where model performance improves with scale. Sharma & Kaplan analyzed NSL using approximation theory and predict that MSE losses decay as $N^{-\alpha}$, $\alpha=4/d$, where $N$ is the number of model parameters, and $d$ is the intrinsic input dimension. Although their theory works well for some cases (e.g., ReLU networks), we surprisingly find that a simple 1D problem $y=x^2$ manifests a different scaling law ($\alpha=1$) from their predictions ($\alpha=4$). We opened the neural …

alpha approximation cs.ai cs.lg intrinsic kaplan law laws losses nsl parameters performance physics.data-an scale scaling scaling law stat.ml theory

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US

Research Engineer

@ Allora Labs | Remote

Ecosystem Manager

@ Allora Labs | Remote

Founding AI Engineer, Agents

@ Occam AI | New York

AI Engineer Intern, Agents

@ Occam AI | US