March 14, 2024, 4:46 a.m. | Armin Sheibanifard, Hongchuan Yu

cs.CV updates on

arXiv:2403.08566v1 Announce Type: cross
Abstract: The storage of medical images is one of the challenges in the medical imaging field. There are variable works that use implicit neural representation (INR) to compress volumetric medical images. However, there is room to improve the compression rate for volumetric medical images. Most of the INR techniques need a huge amount of GPU memory and a long training time for high-quality medical volume rendering. In this paper, we present a novel implicit neural representation …

abstract arxiv challenges compression data eess.iv however images imaging medical medical imaging novel rate representation room storage type

Senior Data Engineer

@ Displate | Warsaw

Solution Architect

@ Philips | Bothell - B2 - Bothell 22050

Senior Product Development Engineer - Datacenter Products

@ NVIDIA | US, CA, Santa Clara

Systems Engineer - 2nd Shift (Onsite)

@ RTX | PW715: Asheville Site W Asheville Greenfield Site TBD , Asheville, NC, 28803 USA

System Test Engineers (HW & SW)

@ Novanta | Barcelona, Spain

Senior Solutions Architect, Energy

@ NVIDIA | US, TX, Remote