Feb. 8, 2024, 5:42 a.m. | Hemanth Saratchandran Shin-Fang Chng Simon Lucey

cs.LG updates on arXiv.org arxiv.org

Recently, neural networks utilizing periodic activation functions have been proven to demonstrate superior performance in vision tasks compared to traditional ReLU-activated networks. However, there is still a limited understanding of the underlying reasons for this improved performance. In this paper, we aim to address this gap by providing a theoretical understanding of periodically activated networks through an analysis of their Neural Tangent Kernel (NTK). We derive bounds on the minimum eigenvalue of their NTK in the finite width setting, using …

aim cs.lg functions gap kernel networks neural networks paper performance relu tasks understanding vision

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Senior Software Engineer, Generative AI (C++)

@ SoundHound Inc. | Toronto, Canada