Feb. 15, 2024, 5:43 a.m. | Siwei Yang, Bingchen Zhao, Cihang Xie

cs.LG updates on arXiv.org arxiv.org

arXiv:2402.09404v1 Announce Type: cross
Abstract: This paper introduces AQA-Bench, a novel benchmark to assess the sequential reasoning capabilities of large language models (LLMs) in algorithmic contexts, such as depth-first search (DFS). The key feature of our evaluation benchmark lies in its interactive evaluation protocol -- for example, in DFS, the availability of each node's connected edge is contingent upon the model's traversal to that node, thereby necessitating the LLM's ability to effectively remember visited nodes and strategize subsequent moves. We …

arxiv benchmark cs.ai cs.cl cs.lg interactive llms reasoning type

Doctoral Researcher (m/f/div) in Automated Processing of Bioimages

@ Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) | Jena

Seeking Developers and Engineers for AI T-Shirt Generator Project

@ Chevon Hicks | Remote

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Quality Intern

@ Syngenta Group | Toronto, Ontario, Canada