June 5, 2024, 4:49 a.m. | Chi-hsuan Wu, Shih-yang Liu, Xijie Huang, Xingbo Wang, Rong Zhang, Luca Minciullo, Wong Kai Yiu, Kenny Kwan, Kwang-Ting Cheng

cs.CV updates on arXiv.org arxiv.org

arXiv:2312.09066v2 Announce Type: replace
Abstract: Online learning is a rapidly growing industry. However, a major doubt about online learning is whether students are as engaged as they are in face-to-face classes. An engagement recognition system can notify the instructors about the students condition and improve the learning experience. Current challenges in engagement detection involve poor label quality, extreme data imbalance, and intra-class variety - the variety of behaviors at a certain engagement level. To address these problems, we present the …

abstract arxiv challenges cs.ai cs.cv current dataset engagement experience face however industry labels major online learning quality recognition replace students type

Senior Data Engineer

@ Displate | Warsaw

Junior Data Analyst - ESG Data

@ Institutional Shareholder Services | Mumbai

Intern Data Driven Development in Sensor Fusion for Autonomous Driving (f/m/x)

@ BMW Group | Munich, DE

Senior MLOps Engineer, Machine Learning Platform

@ GetYourGuide | Berlin

Data Engineer, Analytics

@ Meta | Menlo Park, CA

Data Engineer

@ Meta | Menlo Park, CA