Feb. 14, 2024, 5:43 a.m. | Zhe Zeng Guy Van den Broeck

cs.LG updates on arXiv.org arxiv.org

Bayesian neural networks (BNNs) provide a formalism to quantify and calibrate uncertainty in deep learning. Current inference approaches for BNNs often resort to few-sample estimation for scalability, which can harm predictive performance, while its alternatives tend to be computationally prohibitively expensive. We tackle this challenge by revealing a previously unseen connection between inference on BNNs and volume computation problems. With this observation, we introduce a novel collapsed inference scheme that performs Bayesian model averaging using collapsed samples. It improves over …

bayesian bayesian deep learning challenge cs.ai cs.lg current deep learning harm inference networks neural networks performance predictive sample scalability stat.ml uncertainty

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Senior Software Engineer, Generative AI (C++)

@ SoundHound Inc. | Toronto, Canada