Feb. 12, 2024, 5:43 a.m. | Ahmed Emam Mohamed Farag Ribana Roscher

cs.LG updates on arXiv.org arxiv.org

Protected natural areas are regions that have been minimally affected by human activities such as urbanization, agriculture, and other human interventions. To better understand and map the naturalness of these areas, machine learning models can be used to analyze satellite imagery. Specifically, explainable machine learning methods show promise in uncovering patterns that contribute to the concept of naturalness within these protected environments. Additionally, addressing the uncertainty inherent in machine learning models is crucial for a comprehensive understanding of this concept. …

agriculture analyze cs.cv cs.lg explainable machine learning framework human machine machine learning machine learning models map natural patterns satellite show

Doctoral Researcher (m/f/div) in Automated Processing of Bioimages

@ Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) | Jena

Research Scholar (Technical Research)

@ Centre for the Governance of AI | Hybrid; Oxford, UK

HPC Engineer (x/f/m) - DACH

@ Meshcapade GmbH | Remote, Germany

ETL Developer

@ Gainwell Technologies | Bengaluru, KA, IN, 560100

Medical Radiation Technologist, Breast Imaging

@ University Health Network | Toronto, ON, Canada

Data Scientist

@ PayPal | USA - Texas - Austin - Corp - Alterra Pkwy