March 14, 2024, 4:42 a.m. | Zhanxin Gao, Jun Cen, Xiaobin Chang

cs.LG updates on arXiv.org arxiv.org

arXiv:2403.08568v1 Announce Type: cross
Abstract: Continual learning empowers models to adapt autonomously to the ever-changing environment or data streams without forgetting old knowledge. Prompt-based approaches are built on frozen pre-trained models to learn the task-specific prompts and classifiers efficiently. Existing prompt-based methods are inconsistent between training and testing, limiting their effectiveness. Two types of inconsistency are revealed. Test predictions are made from all classifiers while training only focuses on the current task classifier without holistic alignment, leading to Classifier inconsistency. …

abstract adapt arxiv classifiers consistent continual cs.cv cs.lg data data streams environment free knowledge learn pre-trained models prompt prompting prompts testing training type types

Senior Data Engineer

@ Displate | Warsaw

Professor/Associate Professor of Health Informatics [LKCMedicine]

@ Nanyang Technological University | NTU Novena Campus, Singapore

Research Fellow (Computer Science (and Engineering)/Electronic Engineering/Applied Mathematics/Perception Sciences)

@ Nanyang Technological University | NTU Main Campus, Singapore

Java Developer - Assistant Manager

@ State Street | Bengaluru, India

Senior Java/Python Developer

@ General Motors | Austin IT Innovation Center North - Austin IT Innovation Center North

Research Associate (Computer Engineering/Computer Science/Electronics Engineering)

@ Nanyang Technological University | NTU Main Campus, Singapore