March 19, 2024, 4:42 a.m. | Tatsunori Taniai, Ryo Igarashi, Yuta Suzuki, Naoya Chiba, Kotaro Saito, Yoshitaka Ushiku, Kanta Ono

cs.LG updates on arXiv.org arxiv.org

arXiv:2403.11686v1 Announce Type: new
Abstract: Predicting physical properties of materials from their crystal structures is a fundamental problem in materials science. In peripheral areas such as the prediction of molecular properties, fully connected attention networks have been shown to be successful. However, unlike these finite atom arrangements, crystal structures are infinitely repeating, periodic arrangements of atoms, whose fully connected attention results in infinitely connected attention. In this work, we show that this infinitely connected attention can lead to a computationally …

abstract arxiv atom attention cond-mat.mtrl-sci cs.lg encoding however materials materials science networks physics.comp-ph prediction science type

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Software Engineering Manager, Generative AI - Characters

@ Meta | Bellevue, WA | Menlo Park, CA | Seattle, WA | New York City | San Francisco, CA

Senior Operations Research Analyst / Predictive Modeler

@ LinQuest | Colorado Springs, Colorado, United States