Feb. 14, 2024, 5:42 a.m. | Andrzej Mizera Jakub Zarzycki

cs.LG updates on arXiv.org arxiv.org

Cellular reprogramming can be used for both the prevention and cure of different diseases. However, the efficiency of discovering reprogramming strategies with classical wet-lab experiments is hindered by lengthy time commitments and high costs. In this study, we develop a~novel computational framework based on deep reinforcement learning that facilitates the identification of reprogramming strategies. For this aim, we formulate a~control problem in the context of cellular reprogramming for the frameworks of BNs and PBNs under the asynchronous update mode. Furthermore, …

cellular computational context costs cs.ai cs.lg cure diseases efficiency lab landscape novel prevention q-bio.mn q-bio.qm reinforcement reinforcement learning strategies study

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

MLOps Engineer - Hybrid Intelligence

@ Capgemini | Madrid, M, ES

Analista de Business Intelligence (Industry Insights)

@ NielsenIQ | Cotia, Brazil