Feb. 13, 2024, 5:48 a.m. | Mathias Gehrig Manasi Muglikar Davide Scaramuzza

cs.CV updates on arXiv.org arxiv.org

We present a method for estimating dense continuous-time optical flow from event data. Traditional dense optical flow methods compute the pixel displacement between two images. Due to missing information, these approaches cannot recover the pixel trajectories in the blind time between two images. In this work, we show that it is possible to compute per-pixel, continuous-time optical flow using events from an event camera. Events provide temporally fine-grained information about movement in pixel space due to their asynchronous nature and …

blind compute continuous cs.cv data event events flow images information optical optical flow pixel show work

Research Scholar (Technical Research)

@ Centre for the Governance of AI | Hybrid; Oxford, UK

HPC Engineer (x/f/m) - DACH

@ Meshcapade GmbH | Remote, Germany

Senior Analyst-Data Analysis

@ Tesco Bengaluru | Bengaluru, India

Data Engineer - Senior Associate

@ PwC | Brussels

People Data Analyst

@ Version 1 | London, United Kingdom

Senior Data Scientist

@ Palta | Simple Cyprus or remote