Feb. 6, 2024, 5:48 a.m. | Dai Shi Andi Han Lequan Lin Yi Guo Zhiyong Wang Junbin Gao

cs.LG updates on arXiv.org arxiv.org

Physics-informed Graph Neural Networks have achieved remarkable performance in learning through graph-structured data by mitigating common GNN challenges such as over-smoothing, over-squashing, and heterophily adaption. Despite these advancements, the development of a simple yet effective paradigm that appropriately integrates previous methods for handling all these challenges is still underway. In this paper, we draw an analogy between the propagation of GNNs and particle systems in physics, proposing a model-agnostic enhancement framework. This framework enriches the graph structure by introducing additional …

challenges cs.lg data design development gnn graph graph neural networks networks neural networks paradigm performance physics physics-informed simple structured data through universe

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Data Science Analyst

@ Mayo Clinic | AZ, United States

Sr. Data Scientist (Network Engineering)

@ SpaceX | Redmond, WA