April 23, 2024, 4:42 a.m. | Yong Liu, Mengtian Kang, Shuo Gao, Chi Zhang, Ying Liu, Shiming Li, Yue Qi, Arokia Nathan, Wenjun Xu, Chenyu Tang, Edoardo Occhipinti, Mayinuer Yusufu

cs.LG updates on arXiv.org arxiv.org

arXiv:2404.13388v1 Announce Type: cross
Abstract: Fundus diseases are major causes of visual impairment and blindness worldwide, especially in underdeveloped regions, where the shortage of ophthalmologists hinders timely diagnosis. AI-assisted fundus image analysis has several advantages, such as high accuracy, reduced workload, and improved accessibility, but it requires a large amount of expert-annotated data to build reliable models. To address this dilemma, we propose a general self-supervised machine learning framework that can handle diverse fundus diseases from unlabeled fundus images. Our …

abstract accessibility accuracy advantages analysis arxiv blindness cs.cv cs.lg diagnosis diseases eess.iv experts image machine machine learning major medical multiple shortage supervised machine learning type via visual

Founding AI Engineer, Agents

@ Occam AI | New York

AI Engineer Intern, Agents

@ Occam AI | US

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne