Feb. 12, 2024, 5:42 a.m. | Zehui Li Yuhao Ni William A V Beardall Guoxuan Xia Akashaditya Das Guy-Bart Stan Yiren Zhao

cs.LG updates on arXiv.org arxiv.org

This paper introduces a novel framework for DNA sequence generation, comprising two key components: DiscDiff, a Latent Diffusion Model (LDM) tailored for generating discrete DNA sequences, and Absorb-Escape, a post-training algorithm designed to refine these sequences. Absorb-Escape enhances the realism of the generated sequences by correcting `round errors' inherent in the conversion process between latent and input spaces. Our approach not only sets new standards in DNA sequence generation but also demonstrates superior performance over existing diffusion models, in generating …

algorithm components conversion cs.ai cs.lg diffusion diffusion model dna errors framework generated key ldm novel paper q-bio.gn refine training

Research Scholar (Technical Research)

@ Centre for the Governance of AI | Hybrid; Oxford, UK

HPC Engineer (x/f/m) - DACH

@ Meshcapade GmbH | Remote, Germany

Business Intelligence Analyst Lead

@ Zillow | Mexico City

Lead Data Engineer

@ Bristol Myers Squibb | Hyderabad

Big Data Solutions Architect

@ Databricks | Munich, Germany

Senior Data Scientist - Trendyol Seller

@ Trendyol | Istanbul (All)