June 11, 2024, 4:46 a.m. | Zongbin Wang, Bin Pan, Zhenwei Shi

cs.LG updates on arXiv.org arxiv.org

arXiv:2406.05616v1 Announce Type: new
Abstract: Domain generalization aims to develop a model that can perform well on unseen target domains by learning from multiple source domains. However, recent-proposed domain generalization models usually rely on domain labels, which may not be available in many real-world scenarios. To address this challenge, we propose a Discriminant Risk Minimization (DRM) theory and the corresponding algorithm to capture the invariant features without domain labels. In DRM theory, we prove that reducing the discrepancy of prediction …

abstract arxiv challenge cs.lg domain domains however labels multiple predictions type world

Senior Data Engineer

@ Displate | Warsaw

Solution Architect

@ Philips | Bothell - B2 - Bothell 22050

Senior Product Development Engineer - Datacenter Products

@ NVIDIA | US, CA, Santa Clara

Systems Engineer - 2nd Shift (Onsite)

@ RTX | PW715: Asheville Site W Asheville Greenfield Site TBD , Asheville, NC, 28803 USA

System Test Engineers (HW & SW)

@ Novanta | Barcelona, Spain

Senior Solutions Architect, Energy

@ NVIDIA | US, TX, Remote