March 28, 2024, 4:42 a.m. | Dennis Gross, Helge Spieker, Arnaud Gotlieb, Ricardo Knoblauch

cs.LG updates on

arXiv:2403.18731v1 Announce Type: cross
Abstract: This research presents a method that utilizes explainability techniques to amplify the performance of machine learning (ML) models in forecasting the quality of milling processes, as demonstrated in this paper through a manufacturing use case. The methodology entails the initial training of ML models, followed by a fine-tuning phase where irrelevant features identified through explainability methods are eliminated. This procedural refinement results in performance enhancements, paving the way for potential reductions in manufacturing costs and …

abstract amplify arxiv case cs.lg explainability forecasting integration machine machine learning manufacturing methodology ml models paper performance prediction prediction models processes quality research through training type

Data Scientist (m/f/x/d)

@ Symanto Research GmbH & Co. KG | Spain, Germany

Senior DevOps/MLOps

@ Global Relay | Vancouver, British Columbia, Canada

Senior Statistical Programmer for Clinical Development

@ Novo Nordisk | Aalborg, North Denmark Region, DK

Associate, Data Analysis

@ JLL | USA-CLIENT Boulder CO-Google

AI Compiler Engineer, Model Optimization, Quantization & Framework

@ Renesas Electronics | Duesseldorf, Germany

Lead AI Security Researcher

@ Grammarly | United States; Hybrid