Feb. 6, 2024, 5:43 a.m. | Qilong Ma Haixu Wu Lanxiang Xing Jianmin Wang Mingsheng Long

cs.LG updates on arXiv.org arxiv.org

Accurately predicting the future fluid is important to extensive areas, such as meteorology, oceanology and aerodynamics. However, since the fluid is usually observed from an Eulerian perspective, its active and intricate dynamics are seriously obscured and confounded in static grids, bringing horny challenges to the prediction. This paper introduces a new Lagrangian-guided paradigm to tackle the tanglesome fluid dynamics. Instead of solely predicting the future based on Eulerian observations, we propose the Eulerian-Lagrangian Dual Recurrent Network (EuLagNet), which captures multiscale …

aerodynamics challenges cs.lg dynamics future meteorology paper paradigm perspective physics.flu-dyn prediction

Lead Developer (AI)

@ Cere Network | San Francisco, US

Research Engineer

@ Allora Labs | Remote

Ecosystem Manager

@ Allora Labs | Remote

Founding AI Engineer, Agents

@ Occam AI | New York

AI Engineer Intern, Agents

@ Occam AI | US

AI Research Scientist

@ Vara | Berlin, Germany and Remote