Feb. 12, 2024, 5:43 a.m. | Ziqiao Shang Bin Liu

cs.LG updates on arXiv.org arxiv.org

Facial Action Unit (AU) detection often relies on highly-cost accurate labeling or inaccurate pseudo labeling techniques in recent years. How to introduce large amounts of unlabeled facial images in the wild into supervised AU detection frameworks has become a challenging problem. Additionally, nearly every type of AUs has the problem of unbalanced positive and negative samples. Inspired by other multi-task learning frameworks, we first propose a multi-task learning strategy boosting AU detection in the wild through jointing facial landmark detection …

become cost cs.ai cs.cv cs.lg detection every frameworks images labeling multi-task learning strategy

Research Scholar (Technical Research)

@ Centre for the Governance of AI | Hybrid; Oxford, UK

HPC Engineer (x/f/m) - DACH

@ Meshcapade GmbH | Remote, Germany

Data Engineering Director-Big Data technologies (Hadoop, Spark, Hive, Kafka)

@ Visa | Bengaluru, India

Senior Data Engineer

@ Manulife | Makati City, Manulife Philippines Head Office

GDS Consulting Senior Data Scientist 2

@ EY | Taguig, PH, 1634

IT Data Analyst Team Lead

@ Rosecrance | Rockford, Illinois, United States