May 10, 2024, 4:45 a.m. | Thanh-Dat Truong, Utsav Prabhu, Bhiksha Raj, Jackson Cothren, Khoa Luu

cs.CV updates on

arXiv:2311.15965v2 Announce Type: replace
Abstract: Continual Learning in semantic scene segmentation aims to continually learn new unseen classes in dynamic environments while maintaining previously learned knowledge. Prior studies focused on modeling the catastrophic forgetting and background shift challenges in continual learning. However, fairness, another major challenge that causes unfair predictions leading to low performance among major and minor classes, still needs to be well addressed. In addition, prior methods have yet to model the unknown classes well, thus resulting in …

abstract arxiv attention catastrophic forgetting challenge challenges continual dynamic environments fairness falcon however knowledge learn major modeling prior segmentation semantic shift studies type understanding via while

Doctoral Researcher (m/f/div) in Automated Processing of Bioimages

@ Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) | Jena

Seeking Developers and Engineers for AI T-Shirt Generator Project

@ Chevon Hicks | Remote

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Manager, Business Intelligence

@ Revlon | New York City, United States