May 13, 2024, 4:43 a.m. | Natal\'i S. M. de Santi, Francisco Villaescusa-Navarro, L. Raul Abramo, Helen Shao, Lucia A. Perez, Tiago Castro, Yueying Ni, Christopher C. Lovell, E

cs.LG updates on arXiv.org arxiv.org

arXiv:2310.15234v2 Announce Type: replace-cross
Abstract: It has been recently shown that a powerful way to constrain cosmological parameters from galaxy redshift surveys is to train graph neural networks to perform field-level likelihood-free inference without imposing cuts on scale. In particular, de Santi et al. (2023) developed models that could accurately infer the value of $\Omega_{\rm m}$ from catalogs that only contain the positions and radial velocities of galaxies that are robust to uncertainties in astrophysics and subgrid models. However, observations …

abstract arxiv astro-ph.co astro-ph.ga cs.lg effects free galaxy graph graph neural networks impact inference likelihood networks neural networks parameters redshift replace scale simulation surveys train type

Doctoral Researcher (m/f/div) in Automated Processing of Bioimages

@ Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) | Jena

Seeking Developers and Engineers for AI T-Shirt Generator Project

@ Chevon Hicks | Remote

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Quality Intern

@ Syngenta Group | Toronto, Ontario, Canada