Feb. 2, 2024, 9:47 p.m. | Kaiwen Hou

cs.LG updates on arXiv.org arxiv.org

This paper presents a groundbreaking approach to causal inference by integrating continuous normalizing flows (CNFs) with parametric submodels, enhancing their geometric sensitivity and improving upon traditional Targeted Maximum Likelihood Estimation (TMLE). Our method employs CNFs to refine TMLE, optimizing the Cram\'er-Rao bound and transitioning from a predefined distribution $p_0$ to a data-driven distribution $p_1$. We innovate further by embedding Wasserstein gradient flows within Fokker-Planck equations, thus imposing geometric structures that boost the robustness of CNFs, particularly in optimal transport theory. …

causal inference continuous cs.lg data data-driven distribution geometry groundbreaking inference likelihood maximum likelihood estimation paper parametric refine sensitivity stat.ml

Founding AI Engineer, Agents

@ Occam AI | New York

AI Engineer Intern, Agents

@ Occam AI | US

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne