Feb. 9, 2024, 5:43 a.m. | Christopher J. Lynch Erik Jensen Madison H. Munro Virginia Zamponi Joseph Martinez Kevin O'Brien Brand

cs.LG updates on arXiv.org arxiv.org

Large Language Models (LLMs) play a pivotal role in generating vast arrays of narratives, facilitating a systematic exploration of their effectiveness for communicating life events in narrative form. In this study, we employ a zero-shot structured narrative prompt to generate 24,000 narratives using OpenAI's GPT-4. From this dataset, we manually classify 2,880 narratives and evaluate their validity in conveying birth, death, hiring, and firing events. Remarkably, 87.43% of the narratives sufficiently convey the intention of the structured prompt. To automate …

arrays cs.ai cs.cl cs.lg events exploration form generate generated gpt gpt-4 language language models large language large language models life llms narrative openai openai's gpt-4 pivotal prompt role study validation vast zero-shot

Research Scholar (Technical Research)

@ Centre for the Governance of AI | Hybrid; Oxford, UK

HPC Engineer (x/f/m) - DACH

@ Meshcapade GmbH | Remote, Germany

Senior Analytics Engineer (Retail)

@ Lightspeed Commerce | Toronto, Ontario, Canada

Data Scientist II, BIA GPS India Operations

@ Bristol Myers Squibb | Hyderabad

Analytics Engineer

@ Bestpass | Remote

Senior Analyst - Data Management

@ Marsh McLennan | Mumbai - Hiranandani