Feb. 9, 2024, 5:42 a.m. | Maryam Rahnemoonfar Younghyun Koo

cs.LG updates on arXiv.org arxiv.org

Although the finite element approach of the Ice-sheet and Sea-level System Model (ISSM) solves ice dynamics problems governed by Stokes equations quickly and accurately, such numerical modeling requires intensive computation on central processing units (CPU). In this study, we develop graph neural networks (GNN) as fast surrogate models to preserve the finite element structure of ISSM. Using the 20-year transient simulations in the Pine Island Glacier (PIG), we train and test three GNNs: graph convolutional network (GCN), graph attention network …

computation cpu cs.ce cs.lg dynamics element fidelity gnn graph graph neural networks ice modeling networks neural networks numerical processing study units

Research Scholar (Technical Research)

@ Centre for the Governance of AI | Hybrid; Oxford, UK

HPC Engineer (x/f/m) - DACH

@ Meshcapade GmbH | Remote, Germany

Data Scientist AI / ML - Associate 2 -Bangalore

@ PwC | Bengaluru (SDC) - Bagmane Tech Park

Staff ML Engineer - Machine Learning

@ Visa | Bengaluru, India

Senior Data Scientist

@ IQVIA | Dublin, Ireland

Data Analyst ETL Expert

@ Bosch Group | Bengaluru, India