March 29, 2024, 4:42 a.m. | Anqi Mao, Mehryar Mohri, Yutao Zhong

cs.LG updates on arXiv.org arxiv.org

arXiv:2403.19480v1 Announce Type: new
Abstract: We present a detailed study of $H$-consistency bounds for regression. We first present new theorems that generalize the tools previously given to establish $H$-consistency bounds. This generalization proves essential for analyzing $H$-consistency bounds specific to regression. Next, we prove a series of novel $H$-consistency bounds for surrogate loss functions of the squared loss, under the assumption of a symmetric distribution and a bounded hypothesis set. This includes positive results for the Huber loss, all $\ell_p$ …

abstract arxiv cs.lg functions loss next novel prove regression series stat.ml study tools type

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Snowflake Analytics Engineer - Technology Sector

@ Winning | Lisbon, Lisbon

Business Data Analyst

@ RideCo | Waterloo, Ontario, Canada

Senior Data Scientist, Payment Risk

@ Block | Boston, MA, United States

Research Scientist, Data Fusion (Climate TRACE)

@ WattTime | Remote

Technical Analyst (Data Analytics)

@ Contact Government Services | Fayetteville, AR