April 2, 2024, 7:49 p.m. | Yongliang Lin, Yongzhi Su, Praveen Nathan, Sandeep Inuganti, Yan Di, Martin Sundermeyer, Fabian Manhardt, Didier Stricke, Jason Rambach, Yu Zhang

cs.CV updates on arXiv.org arxiv.org

arXiv:2311.12588v2 Announce Type: replace
Abstract: In this work, we present a novel dense-correspondence method for 6DoF object pose estimation from a single RGB-D image. While many existing data-driven methods achieve impressive performance, they tend to be time-consuming due to their reliance on rendering-based refinement approaches. To circumvent this limitation, we present HiPose, which establishes 3D-3D correspondences in a coarse-to-fine manner with a hierarchical binary surface encoding. Unlike previous dense-correspondence methods, we estimate the correspondence surface by employing point-to-surface matching and …

abstract arxiv binary cs.cv data data-driven encoding hierarchical image novel object performance pruning reliance rendering rgb-d surface type work

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Risk Management - Machine Learning and Model Delivery Services, Product Associate - Senior Associate-

@ JPMorgan Chase & Co. | Wilmington, DE, United States

Senior ML Engineer (Speech/ASR)

@ ObserveAI | Bengaluru