March 26, 2024, 4:45 a.m. | Mohammed Baharoon, Hessa Almatar, Reema Alduhayan, Tariq Aldebasi, Badr Alahmadi, Yahya Bokhari, Mohammed Alawad, Ahmed Almazroa, Abdulrhman Aljouie

cs.LG updates on arXiv.org arxiv.org

arXiv:2310.01099v2 Announce Type: replace-cross
Abstract: In recent years, deep learning has shown promise in predicting hypertension (HTN) from fundus images. However, most prior research has primarily focused on analyzing a single type of data, which may not capture the full complexity of HTN risk. To address this limitation, this study introduces a multimodal deep learning (MMDL) system, dubbed HyMNet, which combines fundus images and cardiometabolic risk factors, specifically age and gender, to improve hypertension detection capabilities. Our MMDL system uses …

arxiv classification cs.cv cs.lg deep learning eess.iv hypertension multimodal multimodal deep learning photographs risk type

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US

Research Engineer

@ Allora Labs | Remote

Ecosystem Manager

@ Allora Labs | Remote

Founding AI Engineer, Agents

@ Occam AI | New York

AI Engineer Intern, Agents

@ Occam AI | US