March 14, 2024, 4:45 a.m. | Minsoo Kim, Gi Pyo Nam, Haksub Kim, Haesol Park, Ig-Jae Kim

cs.CV updates on arXiv.org arxiv.org

arXiv:2403.08256v1 Announce Type: new
Abstract: In the realm of face image quality assesment (FIQA), method based on sample relative classification have shown impressive performance. However, the quality scores used as pseudo-labels assigned from images of classes with low intra-class variance could be unrelated to the actual quality in this method. To address this issue, we present IG-FIQA, a novel approach to guide FIQA training, introducing a weight parameter to alleviate the adverse impact of these classes. This method involves estimating …

abstract arxiv assessment class classification cs.cv face guidance however image images labels low performance quality robust sample through type variance

Senior Data Engineer

@ Displate | Warsaw

Principal Architect

@ eSimplicity | Silver Spring, MD, US

Embedded Software Engineer

@ Carrier | CAN03: Carrier-Charlotte, NC 9701 Old Statesville Road, Charlotte, NC, 28269 USA

(USA) Software Engineer III

@ Roswell Park Comprehensive Cancer Center | (USA) CA SUNNYVALE Home Office SUNNYVALE III - 840 W CALIFORNIA

Experienced Manufacturing and Automation Engineer

@ Boeing | DEU - Munich, Germany

Software Engineering-Sr Engineer (Java 17, Python, Microservices, Spring Boot, REST)

@ FICO | Bengaluru, India