Feb. 15, 2024, 5:42 a.m. | Yuanyu Wan, Chang Yao, Mingli Song, Lijun Zhang

cs.LG updates on arXiv.org arxiv.org

arXiv:2402.09152v1 Announce Type: new
Abstract: We investigate bandit convex optimization (BCO) with delayed feedback, where only the loss value of the action is revealed under an arbitrary delay. Previous studies have established a regret bound of $O(T^{3/4}+d^{1/3}T^{2/3})$ for this problem, where $d$ is the maximum delay, by simply feeding delayed loss values to the classical bandit gradient descent (BGD) algorithm. In this paper, we develop a novel algorithm to enhance the regret, which carefully exploits the delayed bandit feedback via …

abstract arxiv cs.lg delay feedback loss optimization studies type value

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Engineer

@ Lemon.io | Remote: Europe, LATAM, Canada, UK, Asia, Oceania

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Intern - Robotics Industrial Engineer Summer 2024

@ Vitesco Technologies | Seguin, US