April 3, 2024, 4:41 a.m. | Michael Mitsios, Georgios Vamvoukakis, Georgia Maniati, Nikolaos Ellinas, Georgios Dimitriou, Konstantinos Markopoulos, Panos Kakoulidis, Alexandra Vi

cs.LG updates on arXiv.org arxiv.org

arXiv:2404.01805v1 Announce Type: new
Abstract: Emotion detection in textual data has received growing interest in recent years, as it is pivotal for developing empathetic human-computer interaction systems. This paper introduces a method for categorizing emotions from text, which acknowledges and differentiates between the diversified similarities and distinctions of various emotions. Initially, we establish a baseline by training a transformer-based model for standard emotion classification, achieving state-of-the-art performance. We argue that not all misclassifications are of the same importance, as there …

abstract arxiv classification computer cs.lg data detection emotion emotion detection emotions human human-computer interaction ordinal paper pivotal prediction systems text textual type

Data Scientist (m/f/x/d)

@ Symanto Research GmbH & Co. KG | Spain, Germany

Robotics Technician - Weekend Day Shift

@ GXO Logistics | Hillsboro, OR, US, 97124

Gen AI Developer

@ NTT DATA | Irving, TX, US

Applied AI/ML - Vice President

@ JPMorgan Chase & Co. | LONDON, United Kingdom

Research Fellow (Computer Science/Engineering/AI)

@ Nanyang Technological University | NTU Main Campus, Singapore

Senior Machine Learning Engineer

@ Rasa | Remote - Germany