June 11, 2024, 4:41 a.m. | Cong Zeng, Shengkun Tang, Xianjun Yang, Yuanzhou Chen, Yiyou Sun, zhiqiang xu, Yao Li, Haifeng Chen, Wei Cheng, Dongkuan Xu

cs.CL updates on arXiv.org arxiv.org

arXiv:2406.05232v1 Announce Type: new
Abstract: The advent of Large Language Models (LLMs) has revolutionized text generation, producing outputs that closely mimic human writing. This blurring of lines between machine- and human-written text presents new challenges in distinguishing one from the other a task further complicated by the frequent updates and closed nature of leading proprietary LLMs. Traditional logits-based detection methods leverage surrogate models for identifying LLM-generated content when the exact logits are unavailable from black-box LLMs. However, these methods grapple …

abstract arxiv box challenges cs.cl cs.lg human improving language language models large language large language models llms machine nature text text generation type updates writing

Senior Data Engineer

@ Displate | Warsaw

Decision Scientist

@ Tesco Bengaluru | Bengaluru, India

Senior Technical Marketing Engineer (AI/ML-powered Cloud Security)

@ Palo Alto Networks | Santa Clara, CA, United States

Associate Director, Technology & Data Lead - Remote

@ Novartis | East Hanover

Product Manager, Generative AI

@ Adobe | San Jose

Associate Director – Data Architect Corporate Functions

@ Novartis | Prague