Jan. 1, 2023, midnight | Simon Bartels, Wouter Boomsma, Jes Frellsen, Damien Garreau

JMLR www.jmlr.org

Algorithms involving Gaussian processes or determinantal point processes typically require computing the determinant of a kernel matrix. Frequently, the latter is computed from the Cholesky decomposition, an algorithm of cubic complexity in the size of the matrix. We show that, under mild assumptions, it is possible to estimate the determinant from only a sub-matrix, with probabilistic guarantee on the relative error. We present an augmentation of the Cholesky decomposition that stops under certain conditions before processing the whole matrix. Experiments …

algorithm algorithms assumptions augmentation complexity computing error gaussian processes kernel matrix processes processing save show the matrix

Founding AI Engineer, Agents

@ Occam AI | New York

AI Engineer Intern, Agents

@ Occam AI | US

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne