March 28, 2024, 4:48 a.m. | Toyin Aguda, Suchetha Siddagangappa, Elena Kochkina, Simerjot Kaur, Dongsheng Wang, Charese Smiley, Sameena Shah

cs.CL updates on arXiv.org arxiv.org

arXiv:2403.18152v1 Announce Type: new
Abstract: Collecting labeled datasets in finance is challenging due to scarcity of domain experts and higher cost of employing them. While Large Language Models (LLMs) have demonstrated remarkable performance in data annotation tasks on general domain datasets, their effectiveness on domain specific datasets remains underexplored. To address this gap, we investigate the potential of LLMs as efficient data annotators for extracting relations in financial documents. We compare the annotations produced by three LLMs (GPT-4, PaLM 2, …

abstract annotation arxiv cost cs.cl data data annotation datasets domain domain experts efficiency experts finance financial general language language models large language large language models llms performance study tasks them type

Data Scientist (m/f/x/d)

@ Symanto Research GmbH & Co. KG | Spain, Germany

Associate Data Analyst

@ Gartner | Stamford - 56 Top Gallant

Ecologist III (Wetland Scientist III)

@ AECOM | Pittsburgh, PA, United States

Senior Data Analyst

@ Publicis Groupe | Bengaluru, India

Data Analyst

@ Delivery Hero | Hong Kong, Hong Kong

Senior Data Engineer

@ ChargePoint | Bengaluru, India